Connections Between a Family of Recursive Polynomials and Parking Function Theory

نویسنده

  • Angela Hicks
چکیده

In a 2010 paper Haglund, Morse, and Zabrocki studied the family of polynomials ∇Cp1 . . . Cpk1 , where p = (p1, . . . , pk) is a composition, ∇ is the Bergeron-Garsia Macdonald operator and the Ca are certain slightly modified Hall-Littlewood vertex operators. They conjecture that these polynomials enumerate a composition indexed family of parking functions by area, dinv and an appropriate quasi-symmetric function. This refinement of the nearly decade old “Shuffle Conjecture,” when combined with properties of the Hall-Littlewood operators can be shown to imply the existence of certain bijections between these families of parking functions. In previous work to appear in her PhD thesis, the author has shown that the existence of these bijections follows from some relatively simple properties of a certain family of polynomials in one variable x with coefficients in N[q]. In this paper we introduce those polynomials, explain their connection to the conjecture of Haglund, Morse, and Zabrocki, and explore some of their surprising properties, both proven and conjectured. Résumé. Dans un article de 2010, Haglund, Morse et Zabrocki étudient la famille de polynômes ∇Cp1 · · ·Cpk1 où (p1, . . . , pk) est une composition, ∇ est l’opérateur de Bergeron-Garsia et les Ca sont des opérateurs “vertex” de Hall-Littlewood légèrement altérés. Il posent la conjecture que ces polynômes donnent l’énumération d’une famille de fonctions “parking”, indexées par des compositions, par aire, le “dinv” et une fonction quasi-symmétrique associée. Cette conjecture raffine la conjecture “Shuffle”, qui est agée de presque dix ans. On peut montrer, a partir de cette conjecture, que les propriétés des operateurs de Hall-Littlewood, impliquent l’existence de certaines bijéctions entre ces familles de fonctions “parking”. Dans un précédent travail , qui fait partie de sa thèse de doctorat, l’auteur montre que l’éxistence de ces bijéctions découle de certaines propriétés relativement simples d’une famille de polynômes à une vaiable x, avec coefficients dans N[q]. Dans cet article, on introduit ces polynômes, on explique leur connexion avec la conjecture de Haglund, Morse et Zabrocki, et on explore certaines de leur proprieétés surprenantes, qu’elles soient prouvées ou seulement conjecturées.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P´olya Urn Models and Connections to Random Trees: A Review

This paper reviews P´olya urn models and their connection to random trees. Basic results are presented, together with proofs that underly the historical evolution of the accompanying thought process. Extensions and generalizations are given according to chronology: • P´olya-Eggenberger’s urn • Bernard Friedman’s urn • Generalized P´olya urns • Extended urn schemes • Invertible urn schemes ...

متن کامل

Congestion Pricing: A Parking Queue Model

Drivers in urban neighborhoods who patrol streets, seeking inexpensive on-street parking create a significant fraction of measured traffic congestion. The pool of drivers patrolling at any time can be modeled as a queue, where ‘queue service’ is the act of parking in a recently vacated parking space and queue discipline is SIRO – Service In Random Order. We develop a queueing model of such driv...

متن کامل

A Novel Reference Current Calculation Method for Shunt Active Power Filters using a Recursive Algebraic Approach

This paper presents a novel method to calculate the reference source current and the referencecompensating current for shunt active power filters (SAPFs). This method first calculates theamplitude and phase of the fundamental load current from a recursive algebraic approach blockbefore calculating the displacement power factor. Next, the amplitude of the reference mains currentis computed with ...

متن کامل

Uniqueness of meromorphic functions ans Q-differential polynomials sharing small functions

‎The paper concerns interesting problems related to the field of Complex Analysis‎, ‎in particular, Nevanlinna theory of meromorphic‎ ‎functions‎. ‎We have studied certain uniqueness problem on differential polynomials of meromorphic functions sharing a‎ ‎small function‎. ‎Outside‎, ‎in this paper‎, ‎we also consider the uniqueness of $q-$ shift difference‎ - ‎differential polynomials‎ ‎of mero...

متن کامل

A method to obtain the best uniform polynomial approximation for the family of rational function

In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012